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1 Introduction

There is a need for a new account of credence. Witnessing this are a number of problems

formal epistemologists and, in particular, Bayesians, face. The main problem I will focus on

in this paper is the Sleeping Beauty problem. Secondary problems which I will subject to

analysis are: the distinction between probability raising and justification (incl. the problem

of old evidence); the principle of indifference; Doomsday/simulation-style arguments; and,

Newcomb’s problem.

The alternative account of credences I will present capitalizes on the tools of comparative

probability to formalize credences as a sort of belief, subject to logical analysis.

The structure of this paper is as follows. The first major portion of the paper is deticated

to set-up. After the introduction, section 2 will introduce Bayesianism and partial belief.

Section 3 introduces the main detractors from Bayesian, anti-Bayesians and anti-probabilists,

distinguished by what it is they reject from the Bayesian thesis. Two anti-Bayesian frame-

works, time-slicing and imaging, will be given some special attention in this paper for their

ability to match the accuracy of the account I present here (though in an ad-hoc way).

Section 4 introduces comparative probability relations and their axioms.

Then, the paper will move toward presenting my account of credences, and its accom-

panying framework. In section 5, I give a formal definition of credences as a form of belief,
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as opposed to Bayesian partial belief. Section 6 presents a form of erroneous updating (say,

an updating fallacy); with my account of credences allowing for the correct formal state-

ment of the Sleeping Beauty problem, it is this updating fallacy which illustrates exactly

what is going on when partial beliefs are employed, and we will see precisely how they fail

to be expressive enough. But we will not yet be able to state the problem, so: section 7

presents a game-like semantics for my credences, yielding a nice way of capturing the notion

of a generating process, and making obvious one way of generalizing Bayesian confirmation.

This generalization will suffice to state the Sleeping Beauty problem, which will be analyzed

in sections 8 and 9. Finally, section 10 presents much briefer analyses of those secondary

problems named earlier.

2 Basics

Bayesians take partial beliefs as their account of credences.1 Credences are those doxastic

states which summarize relative uncertainty about collections of exclusive and exhaustive

propositions. A collection of propositions is exclusive if the truth of any of its members rules

out the truth of the remainder; it is exhaustive if it is guaranteed that at least one of its

members is true. A collection that has both properties is a partition.

Before saying what partial beliefs are, I must say what I am taking beliefs to be; I will

take beliefs as a primitive. Rather than ask what they are, the goal is to subject agents’

doxastic states to explicit anaylsis, to ask questions such as: are these beliefs consistent? or:

how should we update these beliefs in light of this evidence? So, take it for granted that I am

presupposing the sort of agent who can write, fixing some logical language, those formulas

they would say they believe on a blackboard, this blackboard being their register, or memory,

or corpus of knowledge. We will always be fixing some agent. In general, the motivation

for the (perhaps formal) analysis of belief is belief-talk; that we communicate meaningfully

1If you have never encountered the subject matter of this paper, (Lin 2024) is a good place to start. I
will try my best to keep everything self-contained.
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using the concept of belief, and give reasons for our actions in terms of “beliefs,” etc.

Partial beliefs, then, are those beliefs which are only partially in that register. For

instance, thinking of the blackboard, one may imagine there being an opacity scale, where a

proposition is more believed if it is written more opaquely and less believed if it is written

less opaquely. I will first give more detail about the structure and dynamics of partial belief,

then I will discuss the motivations.

For simplicity, we will allow the agent to fix some analytic truth which we will call verum

and use the symbol ⊤ for, and similarly for some analytic falsehood, falsum, ⊥. The agent

will write verum on the register, and they will not write falsum on the register. This implies

non-triviality ; i.e. taking PB to be the function taking a proposition to its opacity ranking:

PB(⊤) ̸= PB(⊥). It is called “non-triviality” because we think of the propositions as being

given partial belief rankings relative to one another, and a system which has only one ranking,

which all propositions will have, is said to be trivial. By affirming that PB(⊤) ̸= PB(⊥),

we guarantee the existence of more than one probability ranking. Then, we stipulate that

for any proposition A: PB(⊥) ≤ PB(A) ≤ PB(⊤); that is, nothing can be less opaque

than falsum (which will be invisible, as it is not written), and nothing can be more opaque

than verum by convention, since nothing can be more believed than something which is true

simpliciter. Next, we will stipulate that for any two mutually exclusive propositions A and

B, PB(A⊕B) = PB(A)+PB(B) where ⊕ represents the exclusive disjunction. We say that

a function which has these just-stated properties satisfies the axioms of probability, and we

call it a probability function.

Bayes’ rule is the updating rule, sometimes seen as a rational norm, that partial beliefs

update on new information as follows. For any partition, any partition elements inconsistent

with the new datum are ruled out, and those which remain have their partial beliefs rescaled

so as to still sum to certainty (i.e. PB(⊤)) while retaining the same relative ratios. For

instance, if an agent believes a 6-sided die to be fair, this means that they have equal partial

belief on the six, unique up to logical equivalence, propositions which stipulate that the die
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lands a fixed side. The axioms of probability will guarantee that the partial belief assignments

sum to certainty, since the sides of the die are exclusive and exhaustive. Thinking of the

agent’s partial beliefs as partially in their register: they have all six of those propositions

written on their blackboard, but only partially, each with the same opacity, such that their

opacities combine to be as opaque as ⊤, which we also think of as written on the register. If

the agent is then able to rule out 6 (say it is publicly announced, i.e. the agent learns in an

idealized sense where they are guaranteed the truth of what is learned, and they only learn

what is announced), Bayes’ rule stipulates that the agent’s partial beliefs change by taking

away the partial belief which was assigned to 6, and reassigning it to the remaining sides of

the die, so that the ratios of the partial belief assignments remain the same; i.e. the agent

still assigns equal partial belief, but now only to 1 through 5 (thinking of the blackboard: 6

is erased, and 1-5 are each now darkened so as to be 1/5 as opaque as ⊤). If, instead, the

agent believed 6 twice as likely as any other side, but the rest equally as each other, this

means the agent assigns equal partial belief to 1 through 5, and twice as much to 6, and

the partial beliefs add up to certainty. Then, if the agent rules out 1, its assigned partial

belief is taken away and redistributed to 2 through 6 such that they sum to certainty, while

2 through 5 are still assigned the same partial belief as each other, with 6 assigned twice as

much.

Partial belief is generally seen as an alternative framework to belief, sometimes called full

belief, and there has been a historical trend of attempting to give an account of belief, and

belief update, as a special case of partial belief, and partial belief update ((Lin and Kelly

2012), (Mierzewski 2020)). I will argue that this is the opposite of the correct view; we should

move away from partial belief, and toward an account of credence entirely accommodated

within belief.

The motivations for partial belief lie in the desire to give an account of subjective prob-

ability, as much probability- or chance-talk can only really be cashed out as referring to

our own uncertainty as agents. Furthermore, it is not obvious how to give an account of
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how something like betting works using only full beliefs, especially in cases where there is

no obvious thing for the agent to hold a full belief about; e.g. some notion of chance. So,

partial beliefs are thought to add the expressivity needed to deal with situations like this.

It turns, however, that partial beliefs are no more expressive than full belief, assuming we

add some relation of comparative probability (e.g. “is more likely than”) to that language in

which the agent’s beliefs are expressed. This is because comparative probability is enough

to get everything expressed by partial beliefs (i.e. probabilistic dynamics).

Normally, this result has been taken to suggest that our comparative probability beliefs

fix our partial beliefs, and that it is enough to probe them to probe our partial beliefs. But it

will turn out that partial belief, as a framework for credence and credence update, is actually

strictly less expressive than the account of credence I will present herein, cashed out within

full belief. And so, partial beliefs will sometimes update incorrectly.

To surmount this expressivity gap, those who stick to partial belief, as the literature has

done, must do away with updating altogether, or else Bayes’ rule need be replaced with some

alternative which encodes the correct updates into some oracle which the agent has access

to when updating.

I will offer the perspective that comparative probability beliefs induce probabilistic mod-

els that the agent uses in describing their uncertainty. Sometimes the agent will update a

model, keeping those beliefs which induced them fixed otherwise, and sometimes the agent

will update those beliefs which induce their model; these two will not always agree, and

Bayesians will turn out to be constrained to the latter form of update. Thus, instead of

thinking of comparative probability beliefs as fixing an agent’s partial beliefs, and then

working within this less expressive framework, we will take certain collections of compara-

tive probability relations together with an exclusive disjunction as credences.
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3 Alternatives to Bayesianism

Before getting to all of this, I will summarize the main positions which detract from Bayesian-

ism. Anti-Bayesians are those who agree with partial beliefs as a model of credence, but

do not use Bayes’ rule to update. I will focus on two different versions of anti-Bayesianism

(with a third I will mention in section 10), whose success in dealing with those problems

which motivate the move away from Bayes’ rule I will able to explain. But they will have

missed the point, doing away with Bayes’ rule when this was not at all necessary, failing to

diagnose the issue as partial belief.

Time-slicers are those anti-Bayesians who do away with dynamic rational norms alto-

gether, thus losing the ability to make claims about how the agent should update ((Moss

2015), (Hedden 2015)). There is a sense in which the view I will present in this paper time-

slices, only because normal belief is time-slicey. We sometimes retract our beliefs, or find

ourselves experiencing a reality where our preferences differ enough, and we are perhaps no

longer at all in contact with our previous beliefs so as to be rationally bound by them (e.g.

tripping shrooms). (Orthodox) Bayesians model agents as beginning with some universal

prior set of possibilities together with a probability distribution over them, and then only

updating via Bayes’ rule. It is not hard to show (I will later) that there can be no universal

prior. But, since, at any moment there is some probability distribution, and thus assignment

of partial beliefs, which will agree with the account I give in this paper. Thus, time-slicers

will be able to match the account I give. But, unlike time-slicers, I have formalized that

reasoning which yields those solutions they think correct.

Imagers are those anti-Bayesians who do away with Bayes’ rule, replacing it with an

updating rule which also takes into account the distances between different possible worlds.

Of course, just as time-slicers begin at the partial belief assignments they want at each mo-

ment, imagers begin with an assignment of distances between possible worlds which already

has the updating information baked in, so as to always be able to match the account I will

present here.
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It seems that anti-Bayesians, seeing the partial belief model fail to yield the correct

updates, think of themselves as either needing rid themselves of updating altogether, or

create an alternative way to update that yields the intuitively correct solutions to those

problems which arise. But, of course, by doing so, they do not solve problems; they presume

their solutions to the problems correct, and attempt to support their framework, as opposed

to orthodox Bayesianism, via the premise that theirs matches the correct solution to the

problem, while Bayesianism does not. But they have not shown that this solution was

correct, and they can only appeal to intuition and thought experiment. And so the literature

has become messy.

Next, anti-probabilists see similar issues facing the Bayesian framework, and, unlike the

anti-Bayesians who miss the mark by stopping short of what the actual issue is, go too far,

doing away with the use of probabilities in representing the agent’s uncertainty. This sort

of anti-probabilist has gone too far, and the tools of comparative probability will make this

easy to see; indeed, probabilities are entirely expressible within the setting of belief, fixing a

relation with the right axioms (and there are many). Many of the problems which concern

this sort of anti-probabilist (e.g. non-measurable spaces and infinite lotteries (Norton 2021))

are not cases the sort of agent I am interested in will really be entertaining in the relevant

way.

Anti-probabilists may, instead, and as I am doing here, challenge the partial belief model

itself. But they then rest contently without recovering the sort of reasoning which the partial

belief model is capable of in whatever framework they prefer to use as a model of an agent’s

doxastic states. And a model that is useful is worth using. This sort of anti-probabilist must

not merely argue that perhaps people do not have, or speak of, partial beliefs; but they must

argue that we formal epistemologists can do without it as a modeling assumption, while still

keeping the probabilistic dynamics which make them so attractive. Comparative probability

has already yielded this result for full belief. So, this sort of anti-probabilist would do even

better to show that their alternative surpasses partial beliefs in accuracy, explaining why. I
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will do this throughout the remainder of this paper.

4 Comparative probabilities

Before I can get to my account of credences, I must first say what a comparative probability

relation is.2 It is, first and foremost, a subjective relation. We are giving an account of a

certain kind of uncertainty, and must always fix an agent, considering their attitudes with

respect to certain propositions. We will denote a comparative probability relation for an

agent a by ≤a. What exactly this means depends on the comparative probability relation

we choose. And when an agent is justified in making such judgments is the problem of

induction.

The most obvious candidate for a comparative probability relation is “is no more likely

than,” fixing some agent a, so A ≤a B would read as “a takes A to be no more likely than

B.” Of course, it remains to say what it means for a to take it so that one proposition is

more or less likely than another without being circular, so it is better to start with something

else first, and define “likelihood” out of it. Common examples of what tends to be employed

for A ≤a B are such judgments as “a is willing to bet no more on A than B,” and “a

prefers A no more than B,” etc. All that matters is that the relation we choose satisfies the

right axioms. I will be thinking in terms of surprisal, reading A ≤a B as “a thinks that B

being true would be no less surprising to them than A being true” (reading it backwards

for surprisal, so that A ≤a B means that a takes A to be no more likely than B, likelihood

being the obvious inverse of surprisal).

Now we move to those axioms which a probability ordering relation must satisfy. Choose

your favorite probability ordering relation and agent, and fix them. I will suppress denoting

the agent. Firstly, ⊤ > ⊥.3 This is non-triviality. This obviously holds for surprisal:

something which is known to be true is far less surprising than something which is known to

2See (Konek 2019) and (Fishburn 1986) for a good introduction to these ideas.
3Where we define A ≈a B, equally likely, as A ≤a B ∧ B ≤a A; and <, strictly less likely, as A ≤a

B ∧ ¬(B ≤a A); and >, ≥, in the obvious way.
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be false. ⊥ turning out to be true would be something like “the most” surprising (and would

collapse the probability ordering, rendering it trivial ; i.e. only one probability judgment

would exist). Next, we assume that for any proposition A: ⊥ ≤ A ≤ ⊤. This holds for

surprisal: there is nothing less surprising than the agent’s favorite fixed analytic truth and

there is nothing more surprising than some fixed analytic falsehood (should it be true).

Finally, we must assume a finite-cancellation axiom. Take some two collections of propo-

sitions X1, . . . , Xn and Y1, . . . , Yn for some natural number n. We call them isovalent if they

are such that whenever exactly m ≤ n of the Xi are true, then exactly m of the Yi are true,

and vice versa. The idea is that the Xi and Yi always contain the same number of truths.

Now, if our X1, . . . , Xn and Y1, . . . , Yn are isovalent, we stipulate that whenever for all i ≤ n,

Xi ≤ Yi, i.e. they are uniformly less likely, then actually they are all equally likely. That

is, they cannot contain the same number of truths and have one collection be strictly more

likely than the other. These three axioms ensure (indeed they are necessary and sufficient

conditions) that there is a probability function P which agrees with the comparative proba-

bility assignments; i.e. P(A) < P(B) iff A < B. And Bayesians take this P to be their PB

(i.e. their assignment of partial beliefs).

5 New credences

Now we have seen what comparative probability orderings are, and how they give rise to

probabilities without the use of partial belief. It is using these that I will give an account of

credence as belief.

Firstly, consider what occurs when an agent believes an exclusive disjunction over some

collection of propositions A1, . . . , An; denote this ⊕i≤nAi; we take this to be in their register.

These are the sort of situation credences are concerned with, where we have a space of

possibilities forming a partition. Fix some comparative probability relation ≤. Imagine

n = 3; i.e. we are concerned with a 3 element partition. Imagine furthermore that the
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agent has not yet judged the relative probabilities of A1, A2, and A3. We immediately have

everything contained in the following diagram (see Figure 1), where an arrow between two

vertices A and B represents A ≤ B. We imagine it closed under transitivity, it being entailed

by the finite cancellation axiom for ≤; i.e. if there is an arrow between A and B and between

B and C, we imagine there implicitly being an arrow between A and C.

Figure 1: The model induced by belief that A1 ⊕ A2 ⊕ A3

We will call these diagrammatic models, or frequently just models when it is not am-

biguous what is under discussion, and we say that beliefs which entail all of the content of

a model induce that model. This model, in Figure 1, is induced merely by the belief that

A1 ⊕ A2 ⊕ A3.

Note that, here, ¬(⊕i≤3Ai) is logically equivalent to ⊥ and ⊕i≤3Ai is logically equivalent

to ⊥. The fact that, for instance A1 ≤ A1 ⊕ A2 and A2 ≤ A1 ⊕ A2, can be shown using the

finite cancellation axiom through additivity (that for some A and B which are each mutually

exclusive with some C, A ≤ B iff A ⊕ C ≤ B ⊕ C), which it proves. An intuitive way of

thinking about it is that A1 (and similarly for A2) entails A1 ⊕ A2;
4 thus we should expect

that A1 ≤ A1⊕A2, or that A1⊕A2 is no less surprising to the agent than A1, which entails

it, and thus, to the agent, A1 is no more likely than A1 ⊕ A2. The point is, given only a

comparative probability relation, an agent’s belief in an exclusive disjunction immediately

gives rise to some structure.

4Because A1 entails A1 ∨A2, and we know them to be exclusive.
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I will be taking a credence to be a belief in an exclusive disjunction, together with

probability ordering beliefs about its constituents. But I will not yet give an exact formal

definition of a credence, as we will be using it within the scope of this paper. Because, to

make more fine-grained probability judgments, we need more events. For instance, looking

again at Figure 1, if we drew arrows in both directions between all of A1, A2, and A3, we

could stipulate a uniform distribution over them. If, instead, we drew an arrow in both

directions between A1 and A2 ⊕ A3, and then also an arrow in both directions between A2

and A3, we could stipulate that A1 is twice as likely as A2 and A3, which are equally likely,

thus assigning probabilities 0.5, 0.25, and 0.25, respectively, taking P(⊥) = 0 and P(⊤) = 1,

as is conventional. But we cannot, for instance, stipulate that A1 has probability 1/2 and A2

has probability 1/3. In order to circumvent this issue, we will allow the agent to entertain

hypothetical fair dice rolls.

Similarly to our choice of ⊤ and ⊥ as arbitrary propositions with a fixed truth value,

we will allow the agent consider arbitrary propositions with a fixed comparative probability

value. It does not matter what these propositions are chosen to be; imagine an agent wants

to assign probabilities to A1, A2, and A3, as above. Fixing some hypothetical die roll (which

I will define next), our agent will not be entertaining hypotheses such as: the die lands

some certain side and A2. This die is purely hypothetical and the agent is only considering

propositions about it in order to make comparative probability judgments.

One way of cashing the notion of hypothetical fair dice rolls out logically would be to have

the agent literally believe hypothetical judgments. For instance, if the agent who believes

A1 ⊕A2 ⊕A3 wants to judge A2 to have probability 1/3, we can allow them to make such a

judgment as: if there were some fair 3-sided die, then A2 would be as likely as one of those

sides. Logically: ∀X1, X2, X3(((X1 ⊕ X2 ⊕ X3) ∧ X1 ≈ X2 ≈ X3) → A3 ≈ X1), where of

course it does not matter which side of the die is used to assign the probability of A3. We

may also allow the agent to simply stipulate that there is some fair n-sided die, and the right

probability judgments hold; e.g. ∃X1, X2, X3((X1 ⊕X2 ⊕X3) ∧X1 ≈ X2 ≈ X3 ∧A2 ≈ X1).
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Such an existential claim is not too strong, especially for reasonably sized n. For instance,

fixing some n, the agent probably thinks that the propositions stipulating that the number

of stars in their observable universe modulo n is as likely to be each among 0, 1, . . . , n − 1,

and exactly one of these is true.

In either case, the point is that the agent is entertaining these hypothetical propositions to

make more precise probability judgments than possible using ≤ with only whatever number

of events they are actually entertaining, and this is all done without partial belief. Let us

consider now what such the above judgment looks like diagrammatically (see Figure 2).

Figure 2: Assignment of A2 probability 1/3, with A1, A2, and A3 forming a partition

Recall that the die roll is hypothetical (hence it being faded in the diagram), so we are

only considering those events built out of the Ai, and those built out of the Xi, the agent

only relating the two of these collections via comparative probability judgments. We can

also assign A1 probability 1/2, using the same method (see Figure 3).

Now, for instance, we will expect that A3 has probability 1/6, and indeed the finite

cancellation axiom allows us to conclude this, should we add in a diagram for a hypothetical

fair six-sided die.

The diagram in Figure 3 has two different hypothetical dice; we can think of this as the

agent having two hypothetical meter sticks with which the agent can measure probabilities.

Of course, we can always consolidate to have one single meter stick, if we measure them

both by some single metric (them both being measures of the same thing). In general, the
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Figure 3: Assignment of A1 probability 1/2 and A2 probability 1/3, with A1, A2, and A3

forming a partition

nm-sided die is precise enough to measure probability 1/n events and probability 1/m events

exactly. This is because the diagram of the nm-sided die contains both the n-sided die and

the m-sided dies as sub-dies.

So, in the example above, we could consolidate by using a hypothetical fair 6-sided die, it

containing both the 2-die and 3-die within its structure. Figure 4 illustrates this by choosing

two such subgraphs, with X1⊕X2⊕X3 and X4⊕X5⊕X6 (note that they form a partition)

standing in for the sides of the fair 2-die, and similarly for X1 ⊕X2, X3 ⊕X4, and X5 ⊕X6

for the sides of the fair 3-die.

And Figure 5 shows A1 ⊕ A2 ⊕ A3 with the A1 having probability 1/2 and A2 having

probability 1/3, using one hypothetical six-sided fair die.

Already this diagrammatic semantics has become somewhat intractable in size, thus the

abbreviation of the hypothetical fair six-sided die in both of the above diagrams. But, it is

illustrative.

Notice, also, that in Figure 5, no side of the die was used to represent the probability of

two different Ai. A1 is defined using X1, X2, and X3, A2 using X4 and X5, and A3 using X6.

This was intentional; we will be associating each side of the hypothetical die with exactly one

of the events we are assigning probability to. The idea is to see each event we are assigning
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Figure 4: Hypothetical fair 2-die and 3-die within the hypothetical fair 6-die

Figure 5: Canonical model for A1⊕A2⊕A3 with A1 assigned probability 1/2 and A2 assigned
probability 1/3.

probability to as an equivalence class of hypothetical die sides associated with it. This will

facilitate simple updating, but I will explain this in more detail shortly. Call a model which
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contains (i) some A1, . . . , An which the agent believes to be in exclusive disjunction and (ii)

exactly one hypothetical die roll with (iii) probability judgments assigned such that each

side of the hypothetical die is associated with exactly one of the Ai a canonical model.

In this paper, I am defining a credence to be any belief, or collection of beliefs, which

induces a canonical model. This is obviously not the most general definition. A more general

account would those beliefs which induce any diagrammatic model to be a credence; i.e. any

exclusive disjunction, together with whatever probability judgments the agent has about

the propositions, will be a more general credence. But the goal of this paper is to use this

account, rather than flesh it out in the utmost detail.

With regard to credence update, ruling out occurs as follows. Suppose that an agent has

some credence about A1, . . . , An (assumed, remember, to induce a canonical model), and

it is publicly announced that An does not occur. Then the agent removes An and all of

those hypothetical die rolls associated with it, keeping all remaining probability judgments

the same. I will be calling this model update, to distinguish it from a more general credence

update, I will call belief update. The next section will present a simplified example of this

distinction. It is known, and obvious, that this process of model update yields Bayes’ rule.

Consider the A1, A2, and A3 from earlier, whereA1 has probability 1/2 and A2 has probability

1/3. Suppose the agent learns that A2 is false, and updates (see Figures 6 and 7).

Note that this assigns A1 probability 3/4, and A3 probability 1/4, thus giving them the

ratio 3:1, yielding the same result as Bayes’ rule: A1 initially had probability 1/2, and A3

1/6, the ratio between the two of these being 3:1 as well.

In general, I will denote the credence that assigns probabilities pi to propositions in

exclusive disjunction Ai by {Ap1
1 , . . . , Apn

n }; we will always be assuming there are only finitely

many. We do this for simplicity, but also because I am defining credences in terms of

surprisal, and think this is only well-defined for agents who believe any of the outcomes

under consideration may occur, and that they could come to know this. This does not mean

that there cannot be interesting fruit to considering an infinitary version of this logic.
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Figure 6: the update involves removing the ruled out propositions (i.e. A2) and their asso-
ciated die rolls (i.e. X4 and X5), removing these, keeping everything else fixed

Figure 7: the model after updating
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Note that this and the last section allow us to conclude that we can represent everything

Bayesians can — i.e. probability functions over partitions, constraining ourselves to rational

assignments of probabilities, though we could take limits, and partitions of finite size —

without the use of partial beliefs.

Importantly, and the consequences of this will be explored in more detail in section 7,

the partial belief model constrains agents to have one single prior (e.g. thinking of the

register with opacity rankings; every proposition is written with some opacity and then

the only update that can occur is by erasing and redistributing, perhaps via Bayes’ rule).

Intuitively, Bayesians are constrained to a single prior because one can always pass to some

finest partition and ask about the partial belief assignments, or betting strategies, etc.,

there. And so, in my terminology, they are constrained to a single credence, or a single

model. But since model update and belief update will not always coincide, and they have no

way of representing more general belief update, having only the model and having forgotten

those beliefs which induced it, they will not always update accurately. I will get to explicit

examples shortly.

6 An updating fallacy

This section will be develop the distinction between belief update and model update in a

simpler setting.

Consider a situation in which some agent adds two propositions A and B to their register,

due to some evidence. Imagine also that A and B together entail some C. So, the agent

believes C, now, too. Now imagine the agent undergoes some rational update, having learned

some new information. Denote this by saying the update takes A to A′, B to B′, and C to

C ′. This will be an instance of model update. But, suppose that A′ and B′ do not entail C ′,

and instead entail some D which contradicts it.

The agent only believed C because they believed A and B, which they take to be evi-
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denced. Now believing A′ and B′ to be evidenced, them being the rational update of A and

B, they should consider themself as no longer having grounds for belief of C, nor C ′, it just

being C after the update. They should believe D, it being entailed by what they take to be

evidenced, and it entailing, perhaps, ¬C ′ and ¬C. The idea here is that if the agent passes

to C, it being entailed by their beliefs, and then they forget how they got there, they will

think they have grounds to believe C ′ after updating, even though they do not.

Figure 8: The fallacy I am accusing Bayesians of being susceptible to

Of course, I have not shown yet that it is possible to have some such A, B, C, and D, but

that is the target of the next section. The point will be that partial belief necessitates the

pass to a single model. Instead, we must also have some capacity for updating those beliefs

which induce models, if the need should arise, rather than just naively update a model, itself

not directly evidenced, forgetting how we got to it.
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7 Generating processes

In this section, I will give a semantics for credences as describing generating processes, and

this perspective yields, not only a natural way of representing the Sleeping Beauty problem,

which I will analyze in the next section, but also a more general theory of confirmation than

Bayesianism, being able to represent a larger class of hypotheses than Bayesian priors. It is

here where it will be made clear that there can be no universal prior. But I must first show

that the system I have presented here can represent, not only partial beliefs, but Bayesian

confirmation, which I will define.

7.1 Urn semantics

Suppose we have some agent a who believes (i.e. it is in their register) some credence

{Ap1
1 , . . . , Apn

n }. Consider, now, the hypothetical agent b who is playing the following game:

There is a trustworthy interlocutor who guarantees b that they are going to draw a ball from

an opaque urn (which b can see) which contains balls labeled A1 through An, each drawn, for

whatever reason, with probabilities p1 through pn, respectively. Since we are working with

rational probabilities only, by the assumption that our credences are as nice as stipulated

earlier, we could give an explanation as being the urn actually being populated by many

balls, each of the same size, with the ratio of Ai balls to total balls being pi/
∑

i≤n pn. But

this does not matter. One does not ask how a Turing machine moves. Now, it is clear that

agents a and b believe all of the same probability judgments about their collections of A1

through An. Thus, we will take these urn games as a semantics for credences, as this will be

illustrative.

Note, however, that this is an imperfect semantics; it requires one important clarification.

Consider the agent who believes {Odd0.5,Even0.5}, meaning that they take it to be the case

that some die is equally likely to land on an odd or even value. Say that agent also believes

{Prime0.5,¬Prime0.5}, meaning that they take it to be the case that the die’s outcome is as
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likely as not to be prime. We are modeling this as the agent being faced with two urns; one

which draws balls labeled Even, as opposed to Odd, with probability 1/2, and one which

does the same for Prime as opposed to ¬Prime. This suggests that these two processes are

separate, and perhaps thus independent. We might imagine drawing from both urns, and

considering the combined result, multiplying the probabilities, but this is not correct. We

will presume the urns must be drawn from at the same time, and we must entertain any

magicky connexions between the two which may yet allow for counterfactual dependencies,

between these two urns separated in space.

Consider the agent who believes a 4-die they consider to be fair is being rolled; i.e. they

believe {11/4, 21/4, 31/4, 41/4}, and that Odd←→ 1∨3∨5 and Prime←→ 2∨3∨5, where←→

denotes logical equivalence. This agent believes {Odd0.5,Even0.5} and {Prime0.5,¬Prime0.5},

as these are entailed by their beliefs about the die, and in this case, it happens to be the

case that Odd and Prime are probabilistically independent. If the agent instead believed

that the die was fair and six-sided, i.e. {11/6, 21/6, 31/6, 41/6, 51/6, 61/6}, Odd = 1 ∨ 3 ∨ 5,

Prime = 2∨ 3∨ 5, then they would still believe {Odd0.5,Even0.5} and {Prime0.5,¬Prime0.5},

but Odd and Prime will not be probabilistically independent.5

Thus, we must always imagine the urns representing credences as only conferring proba-

bilistic relations to their elements (i.e. the labeled balls within), relative to one another, and

we do not assume independence of different urns, this being logically stronger than the belief

in the two credences themselves, which we are still modeling as two urns being drawn from,

though leaving the possibility of some distinct third urns which refine on the two, without

contradicting them.

7.2 Matching Bayesian confirmation

Now I will begin to get to the point. We are taking this urn to be some kind of black-box

whose draws, for whatever reason, yield certain results with certain probabilities. I want

5Thanks to [redacted] for this example
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to consider the perspective where the urn is thought to generate the balls. And so I want

to consider these urns not merely as a descriptive model of credences, but also as a way to

describe to content of chance hypotheses. So, imagine we had an urn, but we were uncertain

about the true “chances.” This is the sort of situation Bayesian confirmation is concerned

with. This situation is analogous to the uncertainty between two scientific theories which

make different probabilistic predictions about some particle.

What I am calling Bayesian confirmation is statistical confirmation between some collec-

tion of chance-hypotheses. This is a dynamic thing, and confirmation refers to one chance-

hypothesis having its probability raised, as a result of some evidence. So imagine the agent

is playing the urn game, but they are told that the urn is really {H2/3, T 1/3}, or it’s really

{H1/3, T 2/3}. We can think of these as two different theories for describing the urn; and so

if the urn is really just an abstract descriptive device for discussing the bias of a coin (thus

the use of H,T ), the agent is perhaps told to entertain two theories about the bias and to

determine among them as they see flips. But we will stick with the abstraction. It is very

important to highlight that the agent begins with their hypotheses, and performs confirma-

tion over them. For simplicity, I will assume that the agent is told that a different, definitely

fair coin is flipped, and this determines the real bias of the urn/coin under scrutiny (an

alternative is that perhaps, the agent, knowing themselves to want to perform confirmation

on these two hypotheses and to be able to do no better than random yet, begins by assigning

them equal probability).

So, the agent believes {{H2/3, T 1/3}1/2, {{H1/3, T 2/3}1/2}. Immediately we are faced with

some ambiguity. The agent who believes this credence might instead believe that the (think-

ing about the urns) generating process is: one of those two sub-processes is chosen (say

there is an urn within the urn), 50-50, and this occurs on every draw. This is distinct from

the agent who thinks only one of those two sub-credences is actually describing the urn’s

probabilistic content, and they think they each have a fifty percent chance of being the true

one. But the description above does not distinguish between them.
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Distinguishing between these two syntactically necessitates encoding what happens when

a draw takes place, as this is what differentiates them as processes; i.e. what hypotheses

does the agent entertain about the next draw? Firstly, we will distinguish the processes,

for ourselves, as follows: call by A the process where the urn actually is {H2/3, T 1/3}, by

B the process where the urn is {H1/3, T 2/3}, and by C {{H2/3, T 1/2}1/3, {{H1/3, T 2/3}1/2}.

We will denote which process generated the proposition by a subscript, so we have one

agent who believes that {{H2/3
A , T

1/3
A }1/2, {{H

1/3
B , T

2/3
B }1/2}, and another who believes that

{{H2/3
CA

, T
1/3
CA
}1/2, {{H1/3

CB
, T

2/3
CB
}1/2} (distinguishing between the sub-processes as well; it will

not matter).

Here is what the first agent’s credence, {{H2/3
A , T

1/3
A }1/2, {{H

1/3
B , T

2/3
B }1/2}, looks like

diagrammatically, where we have that ¬((HA ⊕ TA)⊕ (HB ⊕ TB))←→ ⊥ and (HA ⊕ TA)⊕

(HB ⊕ TB)←→ ⊤:

Figure 9: Diagrammatic model of {{H2/3
A , T

1/3
A }1/2, {{H

1/3
B , T

2/3
B }1/2}

Note that moving such a nested model to a canonical model (i.e. having only one die roll;
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the diagram just above has 3, one of which, X, occurs with probability 1, and the other two

of which occur with probability 1/2) is syntactically represented by collapsing the probability

spaces, and indeed the collapsed space will be deductively entailed under the definition of

credence I have provided. This agent, for instance, will definitely believe HA⊕TA⊕HB⊕TB;

and all of the relevant probability judgments will follow from the axioms of the relation. So,

the agent can deduce that {H1/3
A , T

1/6
A , H

1/6
B , T

1/3
B }.

Now, before having a ball be drawn and shown to the agent, let us consider what each

agent will believe about the next draw. In particular, the agent who thinks that the process

really is A or B, will believe that, subscripts now not only to denote the generating process

but also all previous all previous draws: HA ←→ {H2/3
A,HA

, T
1/3
A,HA
}, TA ←→ {H2/3

A,TA
, T

1/3
A,TA
}

(that is the A process will continue, if it is the true one); also HB ←→ {H1/3
B,HB

, T
2/3
B,HB
},

TB ←→ {H1/3
B,TB

, T
2/3
B,TB
} (that is the B process will continue, if it is the true one).

On the other hand, the agent who thinks that the process is really C, believes that

HCA
←→ {{H2/3

CA,HCA
, T

1/3
CA,HCA

}1/2, {{H1/3
CB ,HCA

, T
2/3
CB ,HCA

}1/2} and similarly replacing HCA

with TCA
, HCB

, and TCB
, because no matter the outcome, the process continues.

I will go now through the process of Bayesian confirmation. We will imagine that the

first draw from the urn is an H; i.e. that it is HA ∨ HB ∨ HCA
∨ HCB

. Then we will ask

each agent after their assigned probability of A being the process which generates the next

draw. Note firstly that Bayesian confirmation would yield that the agent who holds that the

process is C will stay at 1/2 for CA, and the agent who had A or B at 50-50 will move to

PB(A|H) = PB(H|A)PB(A)/PB(H) = (2/3)(1/2)/((1/2)(2/3) + (1/2)(1/3)) = 2/3; i.e. 2-1

by Bayes’ rule. We will match this.

I will begin with the more complicated case of that agent who thinks the process may be
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either A or B. Recall that they believe:

{{H2/3
A , T

1/3
A }

1/2, {{H1/3
B , T

2/3
B }

1/2}

HA ←→ {H2/3
A,HA

, T
1/3
A,HA
}

TA ←→ {H2/3
A,TA

, T
1/3
A,TA
}

HB ←→ {H1/3
B,HB

, T
2/3
B,HB
}

TB ←→ {H1/3
B,TB

, T
2/3
B,TB
}

We can immediately deduce {H1/3
A , T

1/6
A , H

1/6
B , T

1/3
B } from the first line, as above. Heads

being drawn is equivalent to a public announcement which rules out tails, so we update to

{H2/3
A , H

1/3
B }. Substituting logically equivalent propositions, we get:

{{H2/3
A,HA

, T
1/3
A,HA
}2/3, {H1/3

B,HB
, T

2/3
B,HB
}1/3}

Of course, we have now arrived at the same conclusion as Bayesian confirmation; there is a

2/3 probability that the process is A.

As for the case where the agent believes the process is C, recall that they believe:

{{H2/3
CA

, T
1/3
CA
}1/2, {{H1/3

CB
, T

2/3
CB
}1/2}

HCA
←→ {{H2/3

CA,HCA
, T

1/3
CA,HCA

}1/2, {{H1/3
CB ,HCA

, T
2/3
CB ,HCA

}1/2}

TCA
←→ {{H2/3

CA,TCA
, T

1/3
CA,TCA

}1/2, {{H1/3
CB ,TCA

, T
2/3
CB ,TCA

}1/2}

HCB
←→ {{H2/3

CA,HCB
, T

1/3
CA,HCB

}1/2, {{H1/3
CB ,HCB

, T
2/3
CB ,HCB

}1/2}

TCB
←→ {{H2/3

CA,TCB
, T

1/3
CA,TCB

}1/2, {{H1/3
CB ,TCB

, T
2/3
CB ,TCB

}1/2}

And, reasoning like above, we may deduce from the first line that {H1/3
CA

, T
1/6
CA

, H
1/6
CB

, T
1/3
CB
}.

We may similarly simplify the right hand sides of the above equivalences. Now, we may use

the fact that H is drawn first to update it to {H2/3
CA

, H
1/3
CB
}, and substituting in the simplified
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equivalences yields:

{{H1/3
CA,HCA

, T
1/6
CA,HCA

, H
1/6
CB ,HCA

, T
1/3
CB ,HCA

}2/3, {H1/3
CA,HCB

, T
1/6
CA,HCA

, H
1/6
CB ,HCA

, T
1/3
CB ,HCA

}1/3}}

Now it is clear that the agent thinks there is a 2/3 chance that there is a 1/2 chance the

next process is A (i.e. CA), and there is a 1/3 chance also that there is a 1/2 chance. So the

agent thinks there is 1/2 chance the next draw is generated by process A, and so disagrees

after updating with that agent who thought the process either A or B.

Now, having demonstrated that Bayesian confirmation is representable using belief, under

the perspective that there are processes being described, we will move to generalizing.

7.3 More general generating processes

We have thus far considered hypotheses which assign some probability each to members of a

partition. But, there is another obvious generating process, one which is deterministic. We

may imagine that some urn is perhaps guaranteed to draw A first, and B second; or, for

instance it draws A or B with some probability. How are we to compare these hypotheses?

But I will begin with some more motivation.

The Bayesians, being constrained to some single credence, in my sense, or prior probabil-

ity function, are likewise constrained to some single urn. And they will fail to represent the

following case: I did not know that this was what was happening, but now that I do know,

I think it would have happened in any case.

Imagine the following case. An agent knows that one of the two following bit sequences is

being revealed to them, one bit at a time: 000, or 0001. Assume the agent has reason to be

50-50 between them. We may think of the agent as uncertain over two generating processes,

though ones with deterministic structure. There is also the potential for a new dimension to

the agent’s uncertainty, which is which bit of the sequence is being revealed, or which draw

is taking place, them not all being revealed at once. So, take that agent now and imagine
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they space out, so that they are not certain which bit is currently being revealed. If they

were to hear a 0, they would think that this would have happened anyways. If they hear a

0 and nothing else, or if they hear a 1, they can distinguish between the two processes.

But, consider how the Bayesian represents the dual-uncertainty over both time and pro-

cess; they pass to some single probability space, finer than both; call the 000 process A and

the 0001 process B, then the Bayesian considers the set:

{(A, 01), (A, 02), (A, 03), (B, 01), (B, 02), (B, 03), (B, 1)}

and assigns it probabilities. Thus, whenever 0 occurs, there was also some chance 1 would

have occurred instead, them all being in the same urn drawn from with chance, and so the

Bayesian agent cannot update thinking: I did not know this was going to happen and now

think it would have anyways. Of course, they would have assigned that finer space consistent

values at that time; but it is not their model that thinks 0 or 1 may occur which needs

updating given the information that 0 occurred. The Bayesian agent does not remember the

deterministic structure of the problem!

So, how do we go about representing an agent’s uncertainty in such a situation? It is

by having them believe a description of the problem; i.e. add such a description to their

register. And so we must be able to formalize our description of the problem. We imagine

our agent in a discrete-time setting (I don’t need time to be discrete for the agent, only that

the agent measures time into discrete chunks, to be able to meaningfully say that a ball is

being drawn now, etc.), playing that same urn game as described above as a semantics for

credences.

I must begin by distinguishing between two different propositions, and I will just call

them now and ever propositions, which will take on the role of distinguishing that a ball

with a certain label is ever drawn from the urn, and a ball with a certain label is being drawn

from the urn this time-step. We will denote them nowA and everA, respectively. Obviously,
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nowA entails everA. And ever propositions will be the default.

We introduce a relation, which I will denote A ⇒ B, which means that if nowA, then B

is drawn on the next time-step, and we can denote this nextB. We will call collections of

propositions connected by ⇒ chains of propositions. Note that the content of A ⇒ B is

exactly: A∧B and nowA←→ nextB. The agent will also be able to consider the order of the

draws they see as evidence, in order to rule out hypotheses consisting of chains.

Now, we will be able to describe a wider class of generating process; for instance,

that which generates A first for sure, then B or C with odds 2-1, would be denoted

A⇒ {B2/3, C1/3} and this is equivalent to {(A⇒ B)2/3, (A⇒ C)1/3}.

Now we can denote the statement of the problem that was described earlier earlier, with

the bit sequences being revealed, still thinking in terms of the urn semantics. There are two

generating processes; A, the process 0A,1 ⇒ 0A,2 ⇒ 0A,3 and B, the process 0B,1 ⇒ 0B,2 ⇒

0B,3 ⇒ 1, where the subscripts are to distinguish propositions/draws which the agent cannot

distinguish, except by the process which generates them and their place in it. Thus, the

agent has a credence about one of these two processes being the one which is generating the

bits they will be hearing:

{(0A,1 ⇒ 0A,2 ⇒ 0A,3)
1/2, (0B,1 ⇒ 0B,2 ⇒ 0B,3 ⇒ 1)1/2}

The agent is also uncertain about step of the process they are on. The way we will

represent this is by considering the agent’s hypothesis about how far along the process they

would be, fixing each particular process. Perhaps they are entirely indifferent about what

step is currently taking place, or perhaps they have some evidence which suggests being at

a particular stage of the process, and perhaps the evidence too implies being earlier on if

the process actually is A, but being later on if it’s B, etc. I will assume the agent is just

indifferent, but the point is that the evidence could depend on what is actually going on,
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and that can be accommodated. So, the agent believes

0A,1 ⇒ 0A,2 ⇒ 0A,3 ←→ {now0
1/3
A,1, now0

1/3
A,2, now0

1/3
A,3}

0B,1 ⇒ 0B,2 ⇒ 0B,3 ⇒ 1←→ {now0
1/4
B,1, now0

1/4
B,2, now0

1/4
B,3, now1

1/4}

That is, they do also believe an exclusive disjunction, and thus a credence, about all seven

draws; that is entailed by these two beliefs together with that credence containing A and B.

But they have more information; i.e. that they get to this seven-member partition because

really they think there are two possible processes, one with three and one with four steps.

Then, upon learning that the current draw is a 0, i.e. now0. This entails 0, and they look

at their first belief, and think that this would have occurred with probability 1 in either case

(both A and B entailing that 0 is definitely drawn), and thus they do not update their first

belief. However, the agent is, at this point, able to refine their models of where in either

process they might be; in particular, they are able to rule out now1 in case of B, and so their

second belief updates to:

B ←→ {now0
1/3
B,1, now0

1/3
B,2, now0

1/3
B,3}

Thus the hypothetical in-case-of-B model is updated. In turn, this collection of beliefs after

updating will entail a model with different probabilities than that which is obtained by

starting at those original beliefs, passing to the credence with seven elements, and then

updating that after ruling out 1. In particular, A is not taken to be more likely after seeing

now0 in the former case, whereas 0 makes A more likely in the latter case.

Thus, we now have our first example of that fallacy described in the last section. Here,
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the agent has evidence for believing each of:

{(0A,1 ⇒ 0A,2 ⇒ 0A,3)
1/2, (0B,1 ⇒ 0B,2 ⇒ 0B,3 ⇒ 1)1/2}

0A,1 ⇒ 0A,2 ⇒ 0A,3 ←→ {now0
1/3
A,1, now0

1/3
A,2, now0

1/3
A,3}

0B,1 ⇒ 0B,2 ⇒ 0B,3 ⇒ 1←→ {now0
1/4
B,1, now0

1/4
B,2, now0

1/4
B,3, now1

1/4}

and, together, these entail:

{now0
1/6
A,1, now0

1/6
A,2, now0

1/6
A,3, now0

1/8
B,1, now0

1/8
B,2, now0

1/8
B,3, now1

1/8}

If we update the entailed model upon learning that 0 is drawn, we get:

{now0
4/21
A,1 , now0

4/21
A,2 , now0

4/21
A,3 , now0

3/21
B,1 , now0

3/21
B,2 , now0

3/21
B,3 }

thus yielding that A is now more likely than B, even though 0 would have been drawn for

the first three draws, and then never again, in any case!

We realize the problem when we see that if we instead update those beliefs which entailed

that model to begin with, we now get some some other model, which is:

{now0
1/6
A,1, now0

1/6
A,2, now0

1/6
A,3, now0

1/6
B,1, now0

1/6
B,2, now0

1/6
B,3}

Thus, we see that we need some more refined belief update than merely passing to the finest

partition and applying Bayes’ rule, having forgotten how we got there, forgetting too any

deterministic structure, etc. But this does not mean that we need a new rule for updating

probabilities, nor that we need to do away with update.
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8 The Sleeping Beauty problem

At last, the statement of the Sleeping Beauty problem is as follows. Sleeping Beauty goes

to sleep on Sunday knowing all of the following. A fair coin is flipped (and she is not told

the result); if it lands heads, she will awaken on Monday, and if she lands tails, she will

awaken on Monday and Tuesday. But, on her Tuesday wake up, she will have no memories,

and so all three wake ups are entirely indistinguishable experience to her. Upon waking

up, knowing she is in the game, she is asked about the probability the coin landed heads.

Also, on Mondays she may be then told it is Monday, and she is once more asked about the

probability the coin landed heads.

Let us denote this; firstly, if the coin lands heads, she undergoes one experience, and

if the coin lands tails, she undergoes two experiences, all indistinguishable to the agent,

except by the corresponding coin flip and the order. Thus, we can think of heads and tails

as processes which generate wake-ups, and we see that the game is analogous to a situation

where the agent is 50-50 between two urns, one which draws one ball, and one which draws

two deterministically in sequence, and each ball has the same label (thus indistinguishability).

Syntactically, the agent believes the following to be her description of that process which

generates those draws, where W stands for one of those indistinguishable wake-ups:

{W 1/2
H1

, (WT,1 ⇒ WT,2)
1/2}

Furthermore, she knows exactly what stage of the process she is at in case of heads, there

being only one. Thus, we may denote:

WH1 ←→ nowWH1

In case of tails, she has no reason to think either one more likely, but she is guaranteed that

she is at some step of the process, so she assigns both now propositions equal probability
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under this hypothesis:

WT,1 ⇒ WT,2 ←→ {nowW
1/2
T,1 , nowW

1/2
T,2}

The three of these together is the full formal statement of the Sleeping Beauty problem.

Using the system presented in the last two sections, we may find those asked after prob-

abilities. Firstly, knowing herself to be awake, Beauty learns nowWH,1 ⊕ nowW T,1 ⊕ nowW T,2

(these are exclusive, so I use the exclusive disjunction); she thus also learnsWH,1∨WT,1∨WT,2

(these are not exclusive, so I use the inclusive disjunction). Now, of course, WH1 and

WT,1 ⇒ WT,2 both entail WH,1 ∨WT,1 ∨WT,2, so she does not update her credence about the

processes. She also can do no better with respect to her hypotheses about where she is in

either process, having ruled nothing out at all. Thus, she deduces from these original beliefs:

{nowW
1/2
H,1, nowW

1/4
T,1 , nowW

1/4
T,2}

and is able to provide that the probability of nowWH,1, coextensive with heads, given being

awake, is 1/2.

Next, knowing herself to be in a Monday wake up, learns nowWH,1 ⊕ nowW T,1; and thus

also WH,1 ⊕WT,1. Of course, still, WH1 and WT,1 ⇒ WT,2 both entail WH,1 ⊕WT,1 (i.e. that

the Monday wake up corresponding to that coin flip definitely occurs). She wakes up on

Monday, and thinks this would have happened anyways. But, in case of tails, she can now

do better, and she can rule out nowW T,2, yielding:

WT,1 ⇒ WT,2 ←→ nowW T,1

And this, together with {W 1/2
H1

, (WT,1 ⇒ WT,2)
1/2} and WH1 ←→ nowWH1 yields:

{nowW
1/2
H,1, nowW

1/2
T,1}

31



Thus, she still assigns heads probability 1/2. But she does not move between these two

probability assignments via a single model update.

The Bayesians are, of course, incapable of representing this. They must make a choice

of some wrong conclusion to accept. Some bite the bullet and accept one wrong conclusion,

and then try to prop it up theoretically by making the assumption that individuals are

distributed among those places/times they might be. Thus, in my terms, they simply begin

by believing a credence containing each of the three wake ups, rather than thinking it merely

entailed by the description of the problem, but even then they disagree about how to assign

such a finest partition probabilities. I will come back to this over next two sections.

The first partial belief analysis of the problem begins by noting that given Monday, we

should think heads and tails still equally likely. After all, the coin may not have been flipped

yet! Thus, heads and Monday and heads and Tuesday must have a 1:1 partial belief ratio,

that being maintained after ruling out the second tails wake up. But, then, notice that given

tails, she thinks the first and second wake ups both equally likely. Thus, they too have the

same ratio of partial belief, yielding: PB(nowWH,1) = PB(nowW T,1) = PB(nowW T,2). And,

since these are exclusive and exhaustive, that gives each of them probability 1/3 (Elga 2000).

The other option is to say: upon waking up, heads and tails are equally likely. Thus,

the probability of the two tails wake ups must combine to the probability of the heads wake

up. But, again, the two tails wake ups must have the same probability, Sleeping Beauty

being indifferent given tails. This yields that PB(nowWH,1) = 1/2 and PB(nowW T,1) =

PB(nowW T,2) = 1/4. This matches my analysis at this time-slice. But, then, it means that

knowing that the current wake up is on Monday, we update via Bayes’ rule, yielding that

heads is now twice as likely (i.e. PB(nowWH,1) = 2/3) as tails (Lewis 2001).

So, in either case, we have a coin, that is guaranteed to be fair, changing probabilities

depending on how much the agent knows about what time it is. But we can see that this

is because the Bayesians start at the same description of the problem, but then try to

condense it into a single distribution of partial beliefs. Thus, information is lost: Sleeping
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Beauty cannot think Monday would have happened anyways, if she is a Bayesian.

A prominent anti-Bayesian view within philosophy, time-slicing, has sought to avoid this

by beginning at the partial belief assignments they desire at each step, and doing away with

updating. So, they begin at their desired solution, and they say, even if Bayes’ rule does

not get me this, I will take it anyways. At each time step: go to the intuitively correct

answer. And thus they can only back their solutions up with intuition, appealing to thought

experiments about such spooky things as personal identity over time, which the literature

has gotten itself into the habit of using, as if such questions, if they can even really be

cashed out in a sensible way, are in any way within the domain of something like formal

epistemology, which presupposes some well-defined notion of an agent, not asking after what

that might mean (Builes 2020).

Thus, the time-slicers will easily match my analysis. But, unlike the time-slicers, I have

given a framework within which this problem can be represented. And these representations

are, of course, all static, being syntactic beliefs about descriptions of processes. Thus I say

to the time slicer: time-slice by adopting my view of credences, which takes credences to be

beliefs, and not some special other thing, some mysterious prior the agent begins with and

is bound to.

A similar complaint goes for those who opt to image, using distances between possible

worlds to yield the results they would intuitively like. For instance, imagers deal with the

Sleeping Beauty problem by conceiving of each wake up itself as a possible world, with the

two tails wake ups each being closer to the other than to the heads wake up. But there

is no sense in which, say, if today is Monday, there is another “possible world” in which it

is Tuesday. Perhaps I am uncertain about what day it is, but we have already seen that

passing to some finest partition of possibilities loses the distinction between two different

kinds of update, one which says this would have happened anyways, and one which says

this might not have. But, still within this faulty framework, the imager encodes all of the

relevant information into something their updating rule has access to, and they must then
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argue using intuition for these distances being sensible, let alone correct, such that their

analysis of the Sleeping Beauty problem might actually yield a solution (Cozic 2011).

9 More on Sleeping Beauty-type cases

Now I will move away from the Sleeping Beauty problem itself, and toward the literature it

has become situated within. I will begin by giving a static version of the Sleeping Beauty

problem, one that is well-known.

Imagine an agent who thinks that one of two universes has been created, and that they

are equally likely: one with one planet and one being, and one with two planets, each with

one being, but they are entirely separate. The agent finds themselves on such a planet,

knowing themselves to be one of these beings. How likely is either universe? It is obvious

that this is analogous to the Sleeping Beauty problem, though it involves less, us not needing

to keep track of order. If we denote the proposition that there is someone is alive on a planet

A, we consider two generating processes (we may as well call them H and T ), one which

generates AH,1 and one which generates AT,1 ∧ AT,2. Learning that one is on a planet is

learning hereAH,1⊕ hereAT,1⊕ hereAT,2. And then the analysis goes through just as above. The

agent’s evidence is that at least one being is undergoing phenomenal experience, which was

guaranteed in either case.

I bring this example up because apparently the literature has taken to thinking the

analysis of such problems suggests that we may live in a multiverse, as if such things as

how some agent-in-the-world updates their own evolved constructions of the world, or even

idealized versions of these, bears on such questions (Isaacs et al. 2022)!

In any case, I merely wish to make the following comment about this paper; they distin-

guish between different approaches to these sorts of problems, each as a contender to be The

Rule which yields the correct assignment of partial beliefs to this finest partition, containing

worlds and times/places within them. Of course there is no such rule. One of them, so-
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called compartmentalized conditionalization, updates as we do here in the Sleeping Beauty

problem, but then they, constrained to the partial beliefs model which cannot distinguish be-

tween uncertain stages of deterministic and indeterministic generation processes, are forced

to reason indirectly in that case where an agent is uncertain between two urns, one drawing

red with probability 1/3 and one drawing red with probability 2/3 (we analyzed exactly such

a case in section 7 when I showed my system could match Bayesian confirmation!). Just as

Sleeping Beauty wakes up on Monday and thinks: this would have happened anyways, the

compartmentalized conditioner sees a red draw and thinks: both urns could have produced

this, and thus does not update. Of course, this is not correct. But, then, those other alter-

natives, which are able to accomodate such reasoning, where we think those theories more

likely to have produced some evidence themselves more likely, cannot reason correctly about

the Sleeping Beauty problem. They are all bound to this partial beliefs model, and all of

their best theories are something along the lines of: fix one way of analyzing a problem, and

do this always. But no such way will suffice, there being some times when one analysis is

correct, and some times when another is. But, in order to see when, one must represent the

problems correctly, which until now has not been done.

9.1 Appealing to the long-run

One common appeal made alongside the Bayesian analysis of the Sleeping Beauty prob-

lem, that which assigns probability 1/3 to heads upon waking up, going: in the long-run,

over many plays, 1/3 of the wake ups are heads wake-ups, thus heads should be assigned

probability 1/3.

This appeal models the game incorrectly. The wake ups are not drawn from some single

pool, some single urn as the Bayesians are bound to. This appeal thinks of the game as one

in which, on each tails wake up, a red ball is placed into the urn, and a green ball upon each

tails wake up. Then it asks about the chance of drawing some ball from the urn, rather than

asking about the chance of currently, giving that you are in some single round of the game,
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placing red balls or green balls (and this is obviously 1/2, not changed over each iteration of

the game). Thus, this naive frequentist appeal forgets that Sleeping Beauty knows she is in

some single run of the game.

We can actually show that 1/3 is the correct solution when she does not know this. We

do this by generalizing the game by adding coin flips. Consider a version of the Sleeping

Beauty game where instead two coins are flipped before play; for each coin flip that lands

heads, a single heads wake up is added, and for each that lands tails, a single tails wake up is

added. This game considers four possible processes which may generate the wake ups: HH,

HT , TH and TT , the first generating two heads wake ups, the next one heads and two tails

wake ups, etc. If we represent this game syntactically, and I will save my reader the hassle

of verifying this, we will get that upon waking up, Sleeping Beauty thinks that heads being

responsible for the current wake up has probability 5/12. For a fixed n-many coin flips, the

probability of heads on a given wake up is
∑n

i=0

(
n
i

)
n−i
n+i

, and if we take the limit of this as

n goes to infinity, we get 1/3. What this means is: if Sleeping Beauty were instead playing

infinitely many games, seamlessly, she can do no better than that the current wake up has

probability 1/3 of being due to a heads. But, for any fixed finite-sized game, she can use the

fact that she is in some finite run to do better than 1/3, but no better than 1/2 at n = 1.

10 More problems for Bayesians

This section will conclude by discussing some other problems for Bayesians, with the hope

of providing some perspective by using the account of credences I presented in this paper.

10.1 Justification versus probability raising

There has been a problem throughout the history of Bayesianism which is concerned with

the distinction between probability raising and justification. This problem is entirely due to

the use of partial beliefs.
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A characteristic example is the so-called problem of old evidence, which takes the following

form. Suppose an agent has a theory, and assigns it some subjective probability within some

space of theories. Suppose now that the agent realizes that the theory entails something the

agent already knew about, but had perhaps not explained. Since the agent already knew

the evidence, the agent has not actually ruled any possibilities out when they learn this, so

that they may update via conditionalization (i.e. in my terminology, they perform no model

update). So, no probabilities are raised, meaning, in this context, that the proposition is not

believed any more, the beliefs being partial and updating via Bayes’ rule; but we think that

intuitively the agent now has some more justification for believing the theory, it explaining

something which was previously unexplained.

Taking credences to be full beliefs dissolves the issue entirely. Those reasons for which

we believe a credence are “justification,” and we may have better or worse reasons for the

same belief. This is banal. The question of what reason is sufficient is the problem of

induction. But it is obvious that the agent can have better or worse reasons for using the

same probabilistic model, and thus assigning the same probabilities.

10.2 Indifference

Now I will turn to another problem, which is about the so-called principle of indifference.

This principle, to objective Bayesians, is a rational norm that one sets their degrees of belief

to equal values for a partition about which they know nothing. Modern objective Bayesians

look to the principle of maximum entropy as the generalization, and actually their updating

rule is anti-Bayesian (Williamson 2024). A problem seems to arise with the principle of

indifference.

Take the following illustrative case ((Keynes 1921), (Norton 2008)): suppose an agent

awakes, knowing nothing, and then is asked: “are you in the British Isles or France?” The

agent, being indifferent (and trusting their questioner would not be deceiving them) assigns

them both partial belief 1/2. Then the agent is asked: “are you in Great Britain, Ireland, or
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France?” Note that these two sets are equivalent, the British Isles being Great Britian and

Ireland (and some smaller islands which this example erases; my apologies but please play

along). But, the agent now assigns each partial belief 1/3, assigning France two inconsistent

partial beliefs being asked equivalent questions, under the principle of indifference.

So-called subjective Bayesians dodge this concern by saying that the principle of indiffer-

ence and its generalizations are bunk, and that any prior is rationally permissible, so long

as they cannot be Dutch-booked ; i.e. made to lose money on bets based on their partial

belief assignments. This seems true; it seems unreasonable to say any belief, other than a

contradiction, is rationally impermissible simpliciter.

But subjective Bayesians have missed the point also. I do not think any prior is reason-

able, even if it cannot be discarded as a matter of irrationality. For instance, an agent who

is asked after “A, B, or C?” knowing that one is correct but nothing else, should assign each

1/3. I think it strange for the agent to be thought perfectly reasonable to assign probabilities

98/100, 1/100, and 1/100, respectively, and then be terribly surprised if the answer is C;

this seems like bad modeling practice. But I cannot rule out that the agent has a hunch,

some probabilistic judgment they stand by but cannot give explicit evidence for.

So, this is the account of the principle of indifference I want to give: that it is a modeling

practice. So, with regard to the problem with the agent asked about some France and Britain,

I think that the agent did not even have any conception of being in any of those places before

being asked any questions. Then, they are asked about the British Isles or France, and now

they believe an exclusive disjunction over these two, them being the possible answers to

the question. They assign them equal probability because they are asked a question, they

think they can do no better than random among the answers, so they think them all equally

likely. Then, asked a different question, the agent no longer believes that old credence, and

constructs a new one, evidenced in this new question, thus assigning each among Great

Britain, Ireland, and France probability 1/3. There is no contradiction because I am not

presupposing any kind of more entrenched thing as the agent’s partial belief that they are
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in France, which must remain consistent between different questions. Those questions were

why the agent considered France, or anything else, a possibility at all, their probability

assignment reflecting their belief that these answers are all equally plausible, as answers to

the question, in the face of the (lack of) evidence. Thus, the agent has two different models

at two different times due to two different evidences, and there is no contradiction.

The agent is allowed, of course, to remain committed to the first model, and model

the second question in a way consistent with it (by having the probabilities of Ireland and

Great Britain sum to the probability of the British Isles). But their probability assignments

reflect how likely they think each option is to be an answer to the question; thus, each time

they are asked a question, they take all of the answers to be in some sense comparable.

Indifference is the thing we name when creating a model and choosing to assign comparable

things the same probability. The assignment that France and the British Isles are equally

probable contains the agent’s judgment that they are comparable as candidates. And so,

while committed to this, the agent cannot think that Great Britain and Ireland are also

comparable to France, since they are not comparable to the British Isles (them composing

it), and comparability intuitively being a transitive thing. But, since, to begin with, the

agent judged them comparable as answers to the question, there is no reason they should

not be allowed to model a different question with a different space of answers differently

(unless they commit to some more entrenched thing, like a bet).

10.3 Doomsday/simulation-style arguments

Now we come to what I am calling doomsday/simulation-style arguments. The idea is

basically as follows; imagine there are either going to be 1000 people or 1000000 people in

the history of society. One of these people, at first uncertain of which person they were, is

told that they are the 100th. Of course, being the 100th, the agent thinks: this would have

happened in either case, and does not now have evidence to think one of those hypotheses

much more likely than the other, had they not thought so before. Of course, too, the
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Bayesian framework cannot accommodate this for the same reasons for which they cannot

accommodate the Sleeping Beauty problem. But then people take this and theorize in the

direction of: well, the agent will think, what are the chance’s I would have been the 100th.

As if there is any sense of “I” beyond that which arises out of that physical process we call

that agent; some chance they could have been someone else. This does not make any sense,

unless we presuppose a system of souls being distributed into bodies. And they apply this

faulty reasoning to all kinds of cases; with high probability, we are toward the end of human

society (Leslie 1990)! with high probability, we live in a multiverse! with high probability,

we live in a simulation (Bostrom 2003)! Enough!

10.4 Newcomb’s problem

The final problem I will discuss is Newcomb’s problem and the EDT/CDT debate. Note

firstly that this debate, like many in formal epistemology, is searching for some correct

decision rule, which takes in the right sorts of probabilities, etc. But by now there are a

number of contenders (Weatherson 2024).

The statement of Newcomb’s problem is generally of the form: an agent knows that

they are playing a game set up by some predictor has been historically very accurate, say

999/1000 times. There are two boxes, an opaque one and a transparent one in the room of

the game. The agent is allowed to take both or only the opaque one. The day before, the

predictor comes and places one thousand dollars under the transparent box. They will also

place one million dollars under the opaque box if they predict that the agent will take only

the opaque box (Weirich 2024).

There are so-called causal decision-theorists (CDT) who recommend taking both boxes,

citing that the money is already in it. And then there are evidential decision-theorists who

recommend taking one boxes, citing the fact that the predictor has been historically highly

accurate.

Then, there is a version of the game where the predictor is assumed not just to have been
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historically accurate, but somehow robust, a prophet who can, with 99.9% accuracy, predict

what you actually will do, conditional on you doing either thing! In this case, there is clearly

sufficient evidence for a credence about how accurate the predictor is, and the agent should

take this into account, and take only the opaque box. Otherwise, when the predictor only

has historical frequency backing them up, unless we are naive frequentists, the correct move

is to take both boxes, there being no need for probabilistic reasoning, a mere frequency not

constituting sufficient evidence for a credence.

A reductio of the one-boxing position in the standard game is to consider the open-box

variant, wherein both boxes are transparent. EDT, as it is normally understood, recommends

double boxing in this case, because now they can see the money, and no longer have any

uncertainty about their payoffs. But this is too hasty an analysis. Note that they do still have

uncertainty about how accurate the predictor was; and a metaphysical appeal is required to

assure the agent that the money they see will not *poof* disappear before their eyes. They

will say: the money is already there. But this same metaphysical appeal was already being

made by those who said that the money was already in the box in the standard case.

The questions which should be debated around this problem do not involve some decision

rule which has yet to, and will not, be found. Instead, they should see this problem and

think: what is sufficient evidence for a credence? And this is the problem of induction.

10.5 The problem of induction

On the problem of induction, I will only say that I think that there is no general thing called

“inductive inference.” Some special cases like Bayesian enumerative induction or material-

theory-of-inductions (Norton 2021) presuppose enough theoretical framework to make that

“inductive inference” somehow instead deductive; and it is choosing such a theoretical frame-

work that the problem of induction is concerned with. In general I think that agents begin to

notice patterns within those models of the world evolution endowed them with, and then they

actively construct more models. Then they deduce from those models also, and perhaps they
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fill its parameters using measurements of what those models claim to be models-of. Then

perhaps a model is outdone, or somehow seriously falsified beyond reasonably considering

recovering it, etc. And it may be replaced. But there is no general rule for model creation,

and the existence of some evidence does not guarantee the existence of a model. We do not

pass, inferentially, from evidence to models, but we justify our models using evidence.
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